会员注册 会员登陆
用户名
密 码
记注密码   忘记密码?
欢迎您访问激光与红外网! Welcome to LASER & INFRARED!
  明星企业
 
  支持单位
  展会专题
·中国科学院张清杰院士将出...
·2024智能光子技术研讨会
·先进光刻技术研讨会闪亮来...
·中国科学院张清杰院士将出...
·先进光刻技术研讨会闪亮来...
·2024智能光子技术研讨会
·第九届中国(北京)军事智...
·BPC2024,聚首群英,邀请报...
·凌光红外诚邀您参加CSE化合...
  业界访谈
·两项激光相关的项目入选20...
·中国芯片教父张汝京:一个...
·两项激光相关的项目入选20...
·中国芯片教父张汝京:一个...
·锐科激光闫大鹏获“国家卓...
·锚定激光赛道!多地发布新...
·“2023中国光学十大进展”...
·我们到底需要,什么样的国...
·深度专访:半导体激光领军...
·激光器的阈值特性:不妨“...
·张梦:问渠那得清如许?为...
  产业资讯    
EUV光刻机重磅报告,美国发布
作者:cmh        来源:半导体行业观察微信公众号 
日期:2023-09-14    阅读次数:223
副标题:

        据半导体行业观察微信公众号,于2023年09月12日报道,2022年,半导体市场规模约为0.6万亿美元,商业分析师预计到2030年将翻一番,达到1.0万亿至1.3万亿美元。半导体制造业的大幅增长可以在光刻工艺中体现出。光刻是一种图案化工艺,将平面设计转移到晶圆基板的表面,形成晶体管和布线互连等复杂结构。这是通过一个复杂的多步骤过程,选择性地将光敏聚合物或光刻胶暴露在特定波长的光下完成的。最近,光刻技术的进步在生产最先进的半导体方面创造了竞争优势,使人工智能(AI)、5G通信和超级计算等最先进的技术成为可能。因此,先进的半导体技术会很大程度上影响国家安全和经济繁荣。

        当今最先进的半导体光刻工艺使用EUV光源,特别是13.5nm的光。EUV光允许在半导体中构建更小的单位特征。据报道,EUVL系统目前耗资1.5亿美元,由ASML于2019年首次部署,该公司一直保持着100%的市场份额。迄今为止,ASML已经交付了三种不同型号的EUVL系统,即Twinscan NXE:3400 B/C和NXE:3600D,NXE系统的总出货量从2019年第一季度的31台增长到2022年最后一季度的181台。

        本报告的组织结构如下。引言的其余部分包括EUVL的技术背景、EUVL国际和国内状况的背景以及NIST和CHIPS研发计量计划的概述。其中,第2节包含工作组会议中讨论的EUVL技术状况和需求。第3节概述了工作组会议的调查结果和关于前进道路的建议,以此作为报告的结尾。


        EUV光刻技术背景

        EUVL是制造下一代半导体芯片的关键步骤。EUV光是由高纯度锡产生的高温等离子体产生的。固体锡在液滴发生器内熔化,该仪器在真空室中每分钟连续产生超过300万个27µm的液滴。平均功率为25kW的二氧化碳(CO2)激光器用两个连续脉冲照射锡液滴,分别使液滴成形并电离。最初,产生了数千瓦的EUV光,但由于沿着光路的吸收和散射损失,只有一小部分光到达光刻掩模。13.5nm光的输出功率和光束质量是从间接闪烁体相机的测量中推断出来的。多层聚光镜系统将光引导到光敏聚合物或光刻胶上,从而将图案转移到硅片上。反光镜通过H2气体的恒定流动保护从而免受锡碎片的破坏。自动晶圆台在每次曝光后以≤0.25 nm的分辨率定位晶圆,每秒进行20000次循环检查调整过程。总的来说,这个过程需要在许多不同的工程系统之间进行精确的协调。图1显示了ASML-EUVL组件的照片。


        EUV光刻技术的现状与未来

        先进半导体制造业的增长来自美国以及欧洲和亚洲地区的新EUV制造设备。如前所述,目前唯一生产EUVL扫描仪组件的公司是总部位于荷兰的ASML。ASML向英特尔、总部位于中国台湾的台积电(TSMC)和总部位于韩国的三星等公司销售EUV扫描仪组件。然后,这些公司在其半导体制造设备中使用EUV扫描仪。EUVL系统并非仅在荷兰制造,而是由全球开发的许多模块组成,这些模块在交付给客户之前,将被运送到荷兰的ASML总部进行最终组装和测试。读者可以参考相关文献报告,了解微电子制造生态系统中供应链的更多细节。

        从美国的角度来看,ASML的EUV光源的研发和制造基地位于加利福尼亚州圣地亚哥。EUVL扫描仪组件的光源组件如图2所示。应注意的是,光源组件包括位于EUVL扫描仪组件中的源容器以及其它许多组件,包括激光计量、光束传输系统和驱动激光器及其辅助设备。驻扎在圣地亚哥的Cymer是要负EUV光源相关工作,由ASML于2012年收购。此外,鉴于EUVL在半导体制造方面的优势,出口管制保护了这项技术。具体而言,2022年10月,美国工业和安全局(BIS)发布了一项规则——87 FR 62186,对包括极紫外光刻在内的技术进行出口管制。

        ASML表示,EUV光刻的未来发展包括将数值孔径(NA)从0.33增加到0.55(“High NA”)。High NA可用于减少目前0.33NA所需的多重图案化步骤的数量,并能够解决更精细的几何尺寸。这与公开发布的2022年IEEE国际器件和系统路线图(IRDS)一致,是到2037年继续将晶体管规模扩大到0.5纳米所必需的。新NA平台的目标是提高晶圆和掩模状态的变化速度,以实现几何芯片缩放。High NA系统预计将于2023年交付给客户,用于大批量制造的全平台工艺预计将于2025年投入运营。2023年初,ASML宣布,他们创造了两项新的EUV功率记录,即一小时运行600 W EUV的High NA 的光刻机型号EXE:5200符合剂量稳定性规范并且能够进行700 W开环运行。在实现EUV大批量制造之前,600 W的演示比五年前交付的250 W有所增加。第2.1节和第2.2节包含了关于液滴发生器和激光功率的600 W功率演示的详细信息。关于High NA的其他详细信息不在本报告的范围内。尽管如此,读者还是可以参考Levinson 2022年的一篇论文,了解关于High NA EUVL的现状和前景的更多信息。

       了解EUVL的国际和国内形势有助于了解研发合作机会,并且强调了技术领域的竞争格局和科学领导的必要性。最后,鉴于《芯片法案》的资助是为了提高美国半导体制造业的弹性,人们必须意识到通过一流的计量实践来帮助生产这一关键制造工艺的重要性。


        NIST和CHIPS研发计量计划概述

        CHIPS研发计量项目和NIST博尔德实验室主任Marla Dowell博士在工作组会议上发表了受欢迎的演讲。主题演讲首先提醒与会者NIST的使命:

        通过推进测量科学、标准和技术,以增强经济安全和提高我们的生活质量,促进美国的创新和工业竞争力。

        它强调了NIST的核心能力:

      (1)测量科学,

      (2)严格的可追溯性,

      (3)标准的开发和使用。Dowell博士提供了更多关于芯片研发计量计划细节、组织关系和NIST国家研究机构的背景信息。Dowell博士强调了工业界和NIST之间联合研究的必要性,以合作解决对芯片至关重要的紧迫微电子挑战。他提醒听众,NIST是一个非监管实验室。因此,NIST一直是专有信息的可靠合作伙伴,保持中立、客观,并通过传播支持美国创新和产业竞争力的高质量测量、数据和研究来促进关键技术的发展。

        具体而言,在博尔德,NIST有大约900名员工和超过500000平方英尺的实验室空间,涵盖六个领域包括:

      (1)先进通信技术,

      (2)量子科学与工程,

      (3)时间与频率计量,

      (4)先进材料表征,

      (5)精密成像,

      (6)激光和光电子。Dowell博士随后强调,NIST在微电子领域有着悠久的历史和广泛的目标投资组合,涵盖了许多领域。

      Dowell博士后来转而针对《美国芯片法案》发表演讲。对美国芯片基金的战略进行了概述,包括它将如何支持三项不同的举措:(1)对尖端制造业的大规模投资;(2)成熟和当前一代芯片、新技术和专业技术以及半导体行业供应商的新制造能力;(3)加强美国研发领导地位的举措。对390亿美元的制造业激励和110亿美元的研发激励进行了区分,重点是研发资金和NIST计量科学部分的拨款。Dowell博士讨论了如何通过七个已确定的美国半导体制造业战略机遇,以多种形式寻求行业、学术界和政府利益相关者的广泛反馈,其中包括EUVL工作组会议等活动。

        通信技术实验室(CTL)提供了一个材料计量的例子,在成为芯片研发计量项目主任之前,她曾担任运营部门主任,主要负责5G材料的标准参考材料(SRM)。作为计量学增强微电子元件和产品安全性的能力的一个例子,演讲强调了她与人合著的NIST SP1278文件。

        在结束主题演讲时,Dowell博士向与会者介绍了2022年8月发布的NIST出版物,该出版物介绍了芯片相关的计量机会。此外,她的部门于2023年4月25日上午发布的一份文件概述了国家半导体技术中心的愿景和战略,描述了行业与NIST之间未来的互动方式。

        美国国家标准与技术研究院材料计量实验室(MML)代理主任Stephanie Hooker博士在工作组会议上发表主旨演讲,欢迎与会者在下午会议前发言。Hooker博士重申了NIST的使命,并强调NIST最大的优势是其世界级领先的工程师和科学家的声誉。除了分享NIST的规模和能力外,还将重点放在NIST提供的测量服务上。测量服务包括1100多种标准参考物质(SRM)、约100种标准参考数据(SRD)产品、五个质量保证计划以及众多数据工具和登记册。还强调了文件标准,以及400多名NIST技术人员如何参与100多个标准委员会,并在许多国际标准机构担任领导职务。因此,参与标准化提高了美国在全球范围内的竞争力。她的演讲强调了NIST参与并正在扩展的关键技术领域,包括人工智能(AI)、量子科学、先进通信、先进制造和生物经济。Hooker博士最后介绍了一些既定的参与领域和与NIST合作的方式,包括本报告重点讨论的工作组会议、财团、CRADA和MTA。

        这两篇主题演讲展示了工作组成员和NIST领导层之间的凝聚力和参与度,从而激发了当天活动中的讨论。


        EUVL的技术方面

        在工作组会议上介绍和讨论的EUVL的技术方面在这一章节将详细说明。以下三个部分专门讨论EUV光源模块(第2.1节至第2.3节)。然后,讨论了与EUV光相互作用的表征组件的现状和需求(第2.4节)。第2.4节中与EUV光相互作用的两个组件都与第2.1节到第2.3节有技术研究联系。最后,介绍了EUV光如何被用作半导体制造过程中分析组件的计量工具(第2.5节)。EUV光作为一种工具的计量方面与第2.2节中讨论的辐射测量有直接关系。这些章节在技术上很深入,展示了EUVL生态系统中运行的计量、光生成和半导体材料之间的相互关系。这里讨论的技术细节已经公开发布。尽管如此,将行业和NIST研究的技术专长和现状结合到一份报告中更有助于了解技术前景。报告中加入一部分参考资料,以补充提供相应的技术细节。


        一、液滴发生器:极端条件下的热物理特性和建模

        液滴发生器是EUVL扫描仪组件中的重要部件(图3)。液滴发生器控制进入EUV光源腔的材料的尺寸、速度和重复率,以通过产生13.5nm EUV光的CO2激光器进行电离。因此,必须可靠地输送液滴,才能产生EUV光,因为故障会影响所有下游组件,从而停止运行。液滴的典型直径为27μm,速度为80 m/s,重复频率为50 kHz。液滴发生器触发CO2激光脉冲的发射,使其被称为整个EUV扫描仪组件的“心跳”。

        锡是EUVL应用中液滴发生器的工作流体,因为它在电离成等离子体时会产生特定的13.5nm波长的光。近几十年来,研究人员研究了锡以外材料的可能性,如氙和锂。安全性、成本和性能等因素已证明锡是EUVL制造应用中激光产生等离子体的最佳材料。在半导体制造中,除了锡之外,暂时没有其他材料能够进入EUV光源的公开路线图,因此在基础科学层面了解这种材料的投资将在近期和长期产生影响。该行业对单一材料源锡的定位,使其成为用于产生EUV光的复杂激光-物质相互作用所需的基本材料特性的理想选择。

        液滴发生器的工作原理是将固体高纯度锡(>99.999wt.%)装入容器中,加热至其熔点(~232°C)以上。然后,通过高纯度气体(通常是氮气)将压力施加到容器中液体的一侧,使熔融锡通过过滤器流到另一侧的喷嘴。锡液滴的射流通常由产生机械振动的压电(PZT)晶体调制。第一代液滴发生器的示意图及其照片如图3所示。液滴位置稳定性

    
发表评论  
姓名: 匿名
主题:
请点击查看全部评论!  注册新用户
  产经透视
 
·光鉴科技完成2亿元B轮融资,推进3D视觉技术多...
·2023年中国光纤激光器市场销量达135.9亿元
·Effect Photonics获得3800万美元D轮融资
·央视聚焦新质生产力在武汉:已形成光电子等3大...
 
  产业资讯
 
·锚定激光赛道!多地发布新一轮“追光”计划
·开启6G的未来:太赫兹通信的新突破
·德国团队开发出20kW激光晶体加工适应光学系统...
·深紫外全固态激光器(DUV-DPL)研制难度大 我...
 
   
  技术动态
 
·超构表面全息设计,重塑微纳光子学技术与应用...
·实现速率超过20 Mbps的高速量子通信
·捕捉最短瞬间,单个阿秒脉冲表征技术研究进展...
·他们在实验室“种”出世界最长石墨烯纳米带
 
  技术专题
 
·超紧凑片上偏振控制器
·超紧凑片上偏振控制器
·太赫兹传-控-感“多面手”:亚波长光纤集成器...
·清华大学陈一镭助理教授:提出格密码的量子算...
 
 
首页 激光与红外杂志 产业报道 光电技术 企业展台 产品展示 供求市场 展会专题 最新公告 关于我们
您是 位访问者
版权所有:激光与红外杂志 京ICP备05019986号 Copyright©2004 www.laser-infrared.com All Rights Reserved
Process: 0.559s ( Load:0.021s Init:0.033s Exec:0.131s Template:0.374s ) | DB :12 queries 0 writes | UseMem:2,076 kb